Unsteady Analysis of Viscoelastic Blood Flow through Arterial Stenosis

نویسندگان

  • MD. A. IKBAL
  • S. CHAKRAVARTY
  • P. K. MANDAL
چکیده

A mathematical model of unsteady non-Newtonian blood flow in an artery under stenotic condition has been developed. The flowing blood is considered to be a viscoelastic fluid characterized by the Oldroyd-B model and the arterial wall is considered to be rigid, having cosine-shaped stenosis. The governing equations of motion accompanied by appropriate choice of the initial and boundary conditions are solved numerically by the MAC (marker and cell) method, and the results are checked, for numerical stability with desired degree of accuracy. The key factors like the wall shear stress, resistive impedance, and the other viscoelastic parameters are also examined for further qualitative insight into the flow through arterial stenosis. Comparison of the results reveals that dimensionless pressure drop for the viscoelastic model increases while it diminishes for the shear-thinning power law model over that of the Newtonian model. Moreover, the possibility of flow separation increases with increasing relaxation time (Deborah number), and in case of Newtonian fluid, delayed separation is observed. The grid independence study has also been performed successfully in order to validate the applicability of the methodology as well as the model used under consideration. Special emphasis has duly been made to compare the present theoretical results with the existing ones, and good agreement between them has been achieved both qualitatively and quantitatively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Newtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches

Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...

متن کامل

A Numerical Analysis for the Effect of Slip Velocity and Stenosis Shape on Non-Newtonian Flow of Blood (TECHNICAL NOTE)

The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip ve...

متن کامل

Numerical Study of Hemodynamic Wall Parameters on Pulsatile Flow through Arterial Stenosis

In this paper hemodynamic wall parameters which play an important role to diagnose arterial disease were studied and compared for three different rheology models (Newtonian, Power law and Quemada). Also because of the pulsatile behavior of blood flow the results were obtained for three Womersley numbers which represent the frequencies of the applied pulses. Results show that Quemada model alway...

متن کامل

Mathematical modelling of Sisko fluid flow through a stenosed ‎artery

In the present study, the nonlinear model of non-Newtonian blood flow in cosine-shape stenosed elastic artery is numerically examined. The model is carried out for axisymmetric, two-dimensional and fully developed blood flow. The vessel wall is assumed to be have time-dependent radius that is important factor for study of blood flow. The cosine-shape stenosis convert to rigid artery by using a ...

متن کامل

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011